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The variables x and ¢ are related by the differential equation

2r IX 2
€” — = COoS™ X,

where r 2 0. Whent =0, x=0.

(i) Solve the differential equation, obtaining an expression for x in terms of 7.

(ii) State what happens to the value of x when 7 becomes very large.

(iii) Explain why x increases as f increases.
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A model for the height, # metres, of a certain type of tree at time ¢ years after being planted assumes

1
that,while the tree is growing, the rate of increase in height is proportional to (9 — /) 3. Itis given that
dh
whent=0,4 =1 and Fia 0.2.

(i) Show that % and 7 satisfy the differential equation

dh
— =0.1(9-/
ar (Pr=t)

(ii) Solve this differential equation, and obtain an expression for / in terms of 7.

(iii) Find the maximum height of the tree and the time taken to reach this height after planting

(iv) Calculate the time taken to reach half the maximum height.
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A certain substance is formed in a chemical reaction. The mass of substance formed 7 seconds after

the start of the reaction is x grums.ﬁt any time the rate of formation of the substance is proportional

X _
to (20-x). Whent=0,x=0and g7 ~

1.

(i) Show that x and 7 satisfy the differential equation

dx
— =0.05(20 — x).
dr ( %)

(ii) Find, in any form, the solution of this differential equation.
(iii) Find x when 7 = 10, giving your answer correct to 1 decimal place.
(iv) State what happens to the value of x as # becomes very large.
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In a certain industrial process, a substance is being produced in a container. The mass of the substance
in the container # minutes after the start of the process is x grams. At any time, the rate of formation
of the substance is proportional to its mass. Also, throughout the process, the substance is removed

. : i . dx
from the container at a constant rate of 25 grams per minute. When ¢ = 0, x = 1000 and i 75.

(i) Show that x and ¢ satisfy the differential equation

dx

— =0.1(x - 250).
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11 In a model of the expansion of a sphere of radius rcm, it is assumed that, at time ¢ seconds after the
start, the rate of increase of the surface area of the sphere is proportional to its volume. When ¢ = 0,

dr
=5 and —
7 an p:

=2.

(i) Show that r satisfies the differential equation

d

r 2
— =0.08r". 4
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[The surface area A and volume V of a sphere of radius r are given by the formulae A = 47r-,
V=2nr]
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An underground storage tank is being filled with liquid as shown in the diagram. Initially the tank is
=0 . . . ) Sy i
~ empty. At time 7 hours after filling begins, the volume of liquid is V m? and the depth of liquid is #m.
=0 . . ,
It is given that V' = %/13.

i

The liquid is poured in at a rate of 20 m’ per hour, but owing to leakage, liquid is lost at a rate
: dh

proportional to #2. When & = 1, P 4.95.

(i) Show that /4 satisfies the differential equation
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